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There is examined the problem of vibration of a stamp of arbitrary planform 
occupying a space Q and vibrating harmonically in an elastic medium with 
plane boundaries. It is assumed that the elastic medium is a packet of layers 
with parallel boundaries, at rest in the stiff or elastic half-space. Contact of 
three kinds is realized under the stamp: rigid adhesion in the domain 8, , 
friction-free contact in domain 8s , there are no tangential contact stresses, 
and “film” contact without normal force in domain Bs (there are no normal 

contact stresses, only tangential stresses are present.). It is assumed that the 

boundaries of all the domains have twice continuously differentiable curvature 
and P = 9, U Bs U 9s. 

The problem under consideration assumes the presence of a static load press- 
ing the stamp to the layer and hindering the formation of a separation zone. 
Moreover, a dynamic load, harmonic in time, acts on the stamp causing dynam- 
ical stresses which are of the greatest interest since the solution of the static 

problem is obtained as a particular case of the dynamic problem for o = 0 (o 
is the frequency .of vibration). The general solutiontis constructed in the form of a 

sum of static and dynamic solutions. 
A uniqueness theorem is established for the integral equation of the problem 

mentioned and for the case of axisymmetric vibration of a circular stamp partia- 
lly coupled rigidly to the layer, partially making friction-free contact, the 

problem is reduced to an effectively solvable system of integral equations of 

the second kind, which reduce easily to a Fredholm system. 
These results are an extension of the method elucidated in [l], where by 

the approach in [l] must be altered qualitatively to obtain them. 

1. The system of integral equtiom of the problem described above has the form 

fi ss km (x - E, y - q) 4n (E, 9) d%h = fm (x9 Y) (1.1) 
n=l QlWS- [n/3] 

m = 1,2,3 

Here 41, QS are the tangential contact stresses with a carrier in Q1 u Qs 
projected on OX and Oy , respectively, qs is the normal contact stress with a 
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carrier in &Jr u a,, f1 and fa are amplitude values of the displacement of points 
under the stamp in the 
in Q2, U Q,, 

direction of the Ox and Oy axes, respectively, given 
and fs is the analogous normal displacement given in Q, U Q,, 

Elements of the matrix K (a, fl) are given by the relationships 

K,, (a, S) = a2&f(u) + P2N (u), J&s (a, B) = P2M (4 -i-a2N (a) 

x12 (a, B) = K,s (a, B) = [J!f (u) - N (u)]aB 

icPK~3 (a, p> = - iOlil3~ (a, j3) = i/3-%23 (a, #I) = 

- ifwl32 (a, p) = P (u) 

K33 (a, B) = R (u)t u= p5P+p 

The functions M, N, Y, R are even in u . Their form is determined by the 
kind of medium with which the stamp makes contact. In particular, if the medium 

is an elastic layer coupled rigidly to an undeformable base, the following relation- 

ships hold: 

M (u) == 1/sx22u-a (02 sh 20, ch 20, - o,-~u~ sh 20, ch 2a,)A-l (u) 

N (u) = 2z.~-~a,‘-~ th 20, 

P (u) = {(2u2 - ‘/a@)(1 - ch 201 ch 20.2) + ~r~-%~-~ x 
[2u4 - (Xl” + 3/2x,“) + 1c12x22]} A-l 

R (u) = V,X,~ (a, sh 20, ch 20, - u2cr2-l sh 20, ch 20,)8--~ (u) 

A (u) = u2 (2~~ - xz2) - 
! 
2u* - u2xz2 + -&X22 

1 
ch 20~ ch 2a, + 

(r~-4s2-w [ 2u4 - ~2 (2~2~ + 3~1~) + ~1~x2~ + ‘/4x2”] sh 2~1 sh 208 

Xl2 = ~“@,* (h + 2,_&)-‘, %z2 = &$,h2~-1, ck = (th” - x2k)“’ 

Here h, l-r are the elastic moduli, p is the material density, o is the 

frequency of stamp vibration, and h is half the layer thickness. 
The contours rr, r2 in (1.1) are located in conformity with the rules set down 

in &I. 
A uniqueness theorem analogous to that established in [l] is valid for the system 

of integral equations ( 1. I). 
Let r+ &. (r = I, 2, . . ., p) denote the poles of the functions M (U), 

P(u), R(u) 1 and f~ (s = 1, 2, . . . , a) the poles of the function fV (a). 

Theorem 1. Let the domain Q be convex, Then the system of integral 
equations (1.1) cannot have more than one solution in I&, a > 11, if M (u), i\r (u)? 

P (u), R (u) possess the properties 

1”. [fW”i (&)I’ > 0, [N-i (rj‘)j’ > 0, 7. = 1, 2, * . *, p; s = 1, 2, * * ., p 

2”. w1 (C1)l’ [Ail--” (&)I’ - (P-1 (t;p)l’}” > 0, r = 1. 2. . . .( P 

3”. There exists a matrix ri (u) with elements il,, (u) which are rational 
functions bounded at infinity, with poles at the points -t_ &, and & ~~~~ such that 

for any u (-oo< u < 00) the real Hermitian component of the matrix K (u) 
n-l (u) is positive-definite. 
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The rather cumbersome proof of this theorem is omitted since it duplicates the 
method of proving Theorem 1 in [l] to a significant extent. The method of proving 

analogous theorems is elucidated in [l, 21. 

2. Let us examine a particular case of the system (1. l), namely: Let us consider 
that Q is a circle of radius a, , the domain &?s is a circle of radius ai , and 

the domain ai is a ring with the inner and outer radii a, and as , respectively. 

In this case the system of integral equations is simplified and takes the form 
ar 

$ rkl(Ty d dd @p + frk2try d h(d@p = fk @>? k=l,2 (2.1) 
ai 

rmn(r9f4 = SK,,(u)~~-~(ur)Ja-.(ap)udu 

r E [a,, a,{ k = 1; r ES [O, u21, k = 2 

In contrast to the approach in Cl], the method of left-sided regularization based on 
using the analytic properties of the Fourier transform is not applied successfully in this 
case. Hence, in this paper an extension is given of the method of right-sided regular- 

ization of a system of integral equations, which is used in [3] in its simplest variation. 
In conformity with this approach, let us set up the general form of the solution of 

a system of integral equations. To this end, we continue the right side of the system 

of integral equations outside the domain of definition. Let cp (r) denote the continu- 

ation of the function fi (r) in the domain r < a, , and $r (r) and $s (r) the 
continuations of the functions f1 (4 and fs (r) in the domain r > a, , respectiv- 

ely. 
Let us henceforth assume that the following factorizations are performed 

K = K-K,, KB = f&+&z- 

Now applying the appropriate Bessel transformations to the integral equations on 
the axis, we find the general representation of the solution of the system of integral 

equations in the following form: 

q (r) = \ J (ur) K-l (u) F (u) udu + $ \ H (ur) K+-l (u) Z1 (u) udu + (2.2) 
Y r 

5 J (ur) K+-l (u) Z2 (u) udu, rE 14, a21 
r 

42w = \ 
Jo("')F:!(U) u& + J" (10.) q (IL) 

h(u) s 
r 

Kzz+(u) 
udu, rE [O,d 

Y 

Here J (ur) and H (ur) are diagonal matrices with the diagonal elements 
Jr (ur), JO (ur) and H,(‘) (ur), II,(‘) (ur) , respectively. The contour y is 

the part of the contour r lying in the right half-plane. In addition, we used the 

notation 
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The functions 21, (u) in this latter representation require definition, To define 
them we introduce QC (r) into the left side of the system of integral equations and 
integrate. We first use a representation of the form 

rmn(r, p) = 
ffk,, p-1 J2--* (tp), r > P 

H$% (tp) J2+ (tr), 

tdt 
(2.3) 

r < P 

for each kernel of the system of integral equations. 
Simple maculations reduce the relatio~hips obtained to define the unsown & 

(1.6) to the following system of integral equations of the first kind: 

s e1 (u, t, az) K;l (u) Za (u) udu = (2.4) 

r 

- 
f 

t9, (u, t, az) K-l(u) F (u) wh - + 632 (u, t, ~2) x 

Y 

I(+-” (24) ZI (u) rd.4 

+ 

s 
es (u, t, aI) K+-” (u) ZI (u) udu = - \ @% (~1 t, ax> x 

Y 

K-l(u) F (u) udtl - 
s 

0, (u, t, ar) K;l(u) Zz (u) u&i 
r 

Here 81, (u, t, a) are diagonal second-order matrices whose first diagonal ele- 
ments are, respectively, the functions 

The second diagonal elements can be obtained from the first by the mutual replace- 
ment of the factors u and i? in the first and second terms of the numerator in (2.5). 
Moreover we used the notation 

Let us study the behavior of the kernels of the integral equations obtained for large 
values of the parameters t and u . A simple analysis based on the use of asympto- 

tic formulas for the Bessel functions will permit clarifying the following asymptotic 
relationships 
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e1 (U, t, up) u i exp [--;;;- u)l E 
t-u 

@a(% t, aa) - 
Zexp[-iioz(t+u)] I 

no-a-6 t+u 
es (u, t, ar) - - i e,iug- u, E 

1 t-u 

@.I44 bad - 
exp idI (t + U) I 

2na, I/z t+u 

% (5 t, al) - 
i exp [- ia, (t - u)] 1 

na, JGi t-u 

]uI--t-~, ]tl-+oo, Imu<O, Imt<O 

Here E is the unit matrix, I is the diagonal matrix with elements 1 and - 1. 
Let us introduce the normalizing functions x1 (5, a) and x‘s (z, 4 which 

possess the asymptotic behavior 

ixr (2, a) - bx J&G eiax, xa (2, u’) - b-l JAG e-ias; U, b = co-t 

for IzI--foo, Imz<O. 
In particular, the following can be taken as these normalizing functions: 

Let us multiply the first equation of the system (2.4) by K+ (t) x1 (t, a2) the 

second by K, (t) x, (t, a,), and the third by Kzz+ (t) x1 (t, a,) by first introduc- 

ing the new m&owns by means of the formulas 

z** (US) = xr-l(U, ur) UZ1 (u), za* (24) = xs-l (u, as) nzz (n) 

z,* (U) = xa-1 (u, u&Z, (7.4) 

Let us afterwards project the relationships obtained onto the domain above the 

contour r. 

The kernels of the integral equations degenerate into bisingular integrals for large 

values of the parameters u, t . Let us use the properties of these integrals which are 

associated with the possibility of their being inverted, namely: let US append the 

limiting bisingular integrals obtained to the left side and subtract. As a result of the 

manipulations mentioned and the use of the properties of the bisingular integrals, we 
arrive at a system of integral equations of the second kind, the first of which 

x+ (2) + &- 
4 

’ K, V) MI (k u, az) K+-’ b) X+ (u) 
I’+ 

ct _ p;;;_ uzl 

- K, (t) f% (u, t, az> K-l (u> ~1 (t, ~2) F (u) u$& 

is 

-_ 
(2.6) 
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1 .’ 
w I\ f.* 3 

K+(t)8,(~~,t,a~)K+-l(u) Y+(~~)~l(~,uy)l(l(~,ar)~ 

The remaining equations in the unkowns Y+(z) and Z+ (z) are written analogous- 

ly to (2.6). 
The contour r+. is located above the contour r, and z lies above I’+ , 

The regular functions X+ (z), Y+ (z), Zf (z) in the domain above I’ are connec- 
ted to the unkowns Z,* (z), -Z,* (z), Z,* (z) by the following relationships: 

Z$” (2) = &Y”(s) + -& K, (2) Rx- (4 

zs*(“) = &Sf@) + . * & K, (2) Be- (2) 

.&* (2) :.= -& .z:” (z) + -& lY,,+ (‘7) H:3- (z) 

where - (4, R, (3, f&s- ( z 1 are regular in the lower half-plane. The function 
MI (t, U, us) in the kernel of the integral equation (2.6) has the form 

M, (t, u, as) = 8, (u, t, 4 x1 (t, as) ~2 (u, ~2) (t" - ~"1 - 

(t+ u)E 

The integral operators of the system (2.6) are not completely continuous in the 
Banach space c (‘i) ; here c (A) is the space of functions which are continuous with 
the weight zh on the contour f . However, manipulations can be made analogous 
to those used in [3), which reduce the operators mentioned to Fredholm operators. 

For the practical purposes of solving the mentioned system of equations there is no need 
to perform the mentioned manipulations since the form written down is most conven- 

ient for the solution. 
In order to solve the system of integral equations (2.6) approximately, the cont- 

ours lT+, r in the representations of the kernels must be deformed in the lower half- 
plane. Consequently, the integral over the deformed contours turns out to be small, 
and can be neglected, and the system of integral equations reduces to a system of 

algebraic equations [4]. 
We obtain the following relationships to determine the contact stresses: 

It is seen that finding the solution of the system of integral equations of the second 
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kind (2.6) completely solves the problem of seeking the contact stresses. 

3. Let us study the properties of the solutions of the system of integral equations. 
Theorem 2. The system of integral equations of the second kind (2.6) is 

solvable uniquely in the space of functions c (1) if the system of integral equations 

(1.1) has a unique solution in La, a > 1. 
The proof of the theorem is based on the equivalence of the system of integral 

equations (1.1) to the system of integral equations with a completely continuous opera- 
tor obtained from the system of integral equations of the second kind (2.6) . The 
u~quen~s of the solution of the Fredholm system of integral equations assures its 
solvability. 

On the basis of this theorem, the general form of the solutions of the system of the 
second kind (2.6) is set up, namely: the asymptotic formulas 

x+ (2) - cg-1, Y+ (2) - c2z-1, z+ (z) - cgz-1, 1 z I-3 m 

are valid. 
Here er, e2 are constant vectors, and c3 is a constant. 
Using these properties, and the relationship (C&7), we establish the following prop- 

erties of the functions iI& (r) (V is the Poisson’s ratio of the layer material) 

q1 (r)(r - ff#“qU.l - rp+ie EC (al, US) 

42 b-1 I r - a1 I”? (us - rp+iE EC (0, az) 

&+ art.h I -22y 
2 (I- Y) 

For an approximate evaluation of stress at inner points of the domains SZi , de- 
formation of the contours in (2.7) can be used. Evaluating the residues of the inte- 

grands at the poles intersected by the deformable contours, and neglecting small integ- 
ral terms, we obtain the following representation for the solution: 

q(r)zf J(qr)K-l(v) --$-~~~(--Ph.~~~~(--P~r) X 
k=l 

Res K;l(~)Y+(-P1)-~~~l(-pk~u~)J(-Pi’)X 
uz--p 

Resk K;l (u) S+ (- pk)} , 

k=l 

ar<r<a2 
u=-ph. 

(3. u 

O\<r<a, 

Here -Pk (k = 1, 2, . . ., n), -2s (s = 1, 2, . . ., m) are, respectively, 

the zeroes of det K (z) and K,, (z) ,&I the lower half-plane. Moreover, 

fl 0”) = fl Jl (v), fs b’) = fsJo (rlr), f = {fl, f2) 

q, fz = const 
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was taken as the right sides of (2. 1) without limiting the generality in obtaining 
the expression (3.1). 

To study the behavior of the surface outside the stamp and in the domain Q2, 
the values found for Qk (r) must be inserted in the system of integral equations 

(2.1) and the value of the right sides outside the domain of contact and the value of 
the right side in the first equation in the domain fi, must be evaluated.Consequen- 

tly, a representation of the following kind (r_ < r): 

‘l’(r)=+) \ uH(11~)K(~)IDq(U,1)K-l(1)F(l)t+2e~ x (3.2) 

v r- 

03 (u, t)] dudt Jr & \ \ uH (w) K (u) [ Dx (u, t) K+-l (t) Y+ (t) x 

rr._ 

x1: (4 a~> + h (u, t) K+-l (t) Xi (t) XB (6 or) + 2~ 3$ 
x2 (tc ax) 03 (u, t,] dudt 

v(r) = +s s tJ (tr) K (t) DI (u, t) K-l(u) F (u) udt du + 

y p_ 

X 

r > a2 

a 

16n” tJ W) K (1) [Ds (u, t) K+-l (u) Y+ (u) XI (u, aI) + 

DI (u, t) K+-l (u) X+ (u) xz (~7 a2)l dtdu + 

s 
F2 ;9”;l(ur) [ K12 (u) + -+ 5 tKr2 (t) 6% (u, t, aI) dt] du + 

Y r- 

[ 
K1.g (u) + -+ ’ 

? 
tKrz (t) 0s (u, t, aI) dt] du O<r<al 

A- 

is obtained for the behavior of the suface. 
The following notation was used here 

a = (1, 01, e = (0, 11, $ (r) = {% (4 *a (41 

D, (u, t) = a,% (u, t, a,) - a,% (u, t, 4, k = 1, 2, 4 

D3(% t) = -& WI (tar) Jo (us) - uJ, @al) JI (%) I 

Let us present a theorem permitting estimation of the error in the approximate 
solution (3. l), (3.2) of the problem (2.1). For the sake of brevity, its proof perform- 

ed by using the method of perturbations is omitted. 
Theorem 3. Let the system (2. 1) with the matrix kernel K (u) have the 

solution 
cl2*1* 

P = G&Y cl21 
and with the matrix K* (u) the solution q* = {Q~*, 

Then if the elements Kij (U) 

K* (n) 

and Xii* (u) of the matrices K (u) and 

in the conditions of Theorem 1 satisfy the conditions 
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IKij(u)--~ij*(u)IIKij(u))-~(1+1uI)”<E, a>l/s 
then for sufficiently small E the inequality 

is valid where t is independent of qk and 8. 
The problems examined may be used as a model for the investigation of the nature 

of the contact between foundations and the ground. as well as in the defectoscopy of 

glue compounds. Namely, by having the set of solutions of the problem for different 

contact conditions it is possible to predict the domains of incomplete coupling from 
the condition of best agreement between the experimental and theoretical results. 

1. Ba 

2. Ba 

3. Ba 

4. Ba 
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